
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr

yamagme4@m
Journal of Sound and Vibration 305 (2007) 492–520

www.elsevier.com/locate/jsvi
Experiments and analysis on chaotic vibrations of a shallow
cylindrical shell-panel

K. Nagaia,�, S. Maruyamaa, T. Muratab, T. Yamaguchia

aDepartment of Mechanical System Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
bMatsushita Refrigeration Company, 2-3-1-2, Noji-Higashi, Kusatsu, Shiga 525-8555, Japan

Received 20 September 2006; received in revised form 5 February 2007; accepted 15 April 2007

Available online 27 June 2007
Abstract

Detailed experimental results and analytical results are presented on chaotic vibrations of a shallow cylindrical shell-

panel subjected to gravity and periodic excitation. The shallow shell-panel with square boundary is simply supported for

deflection. In-plane displacement at the boundary is elastically constrained by in-plain springs. In the experiment, the

cylindrical shallow shell-panel with thickness 0.24mm, square form of length 140mm and mean radius 5150mm is used for

the test specimen. All edges around the shell boundary are simply supported by adhesive flexible films. First, to find

fundamental properties of the shell-panel, linear natural frequencies and characteristics of restoring force of the shell-panel

are measured. These results are compared with the relevant analytical results. Then, geometrical parameters of the shell-

panel are identified. Exciting the shell-panel with lateral periodic acceleration, nonlinear frequency responses of the shell-

panel are obtained by sweeping the frequency of periodic acceleration. In typical ranges of the exciting frequency,

predominant chaotic responses are generated. Time histories of the responses are recorded for inspection of the chaos. In

the analysis, the Donnell equation with lateral inertia force is introduced. Assuming mode functions, the governing

equation is reduced to a set of nonlinear ordinary differential equations by the Galerkin procedure. Periodic responses are

calculated by the harmonic balance method. Chaotic responses are integrated numerically by the Runge–Kutta–Gill

method. The chaotic responses, which are obtained by the experiment and the analysis, are inspected with the Fourier

spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. It is found that the

dominant chaotic responses of the shell-panel are generated from the responses of the sub-harmonic resonance of 1
2
order

and of the ultra-sub-harmonic resonance of 2
3
order. By the convergence of the maximum Lyapunov exponent to the

embedding dimension, the number of predominant vibration modes which contribute to the chaos is found to be three or

four. Fairly good agreements are obtained between the experimental results and the analytical results.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is of practical importance and of academic interest to investigate chaotic vibrations of thin walled
structures under periodic excitation. Shells and plates are fundamental elements of the structures and are
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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utilized practically in transport vehicles such as aircraft, spacecraft and others. Since the shell has curved
configuration, lateral deflection of the shell is coupled to in-plane deformation intensely. Then, bending
rigidity of the shell is increased than that of a plate. However, when lateral load on the shell exceeds ultimate
magnitude, buckling phenomenon appears with the type of snap-through transition. Furthermore when the
shell is excited by periodic load, nonlinear vibrations of the shell are generated with resonance. In typical
regions of the exciting frequency, chaotic vibrations are generated with random-like responses involving
dynamic snap-through transition, even though the amplitude of excitation is small. The generation of the
chaotic response is drastically influenced by small fluctuations of configuration of the shell and constraint
conditions at the boundary. In practical design of thin walled structures, it is important to predict occurrence
of the chaotic phenomena precisely and also to stabilize the chaotic responses.

Nonlinear vibrations of shells have been investigated by many researchers. For nonlinear periodic responses
of closed cylindrical shells, numbers of reports have been presented. To determine the characteristics of
nonlinear frequency response curve, both analytical and experimental studies were conducted by Evensen for
shells and rings [1,2] and by Olson for shells [3]. A cylindrical shell with both ends clamped was studied by
Matsuzaki and Kobayashi [4], while Chen and Babcock [5] analyzed the nonlinear responses of a simply
supported shell and conducted the experiment of shells with rings at both ends. Nonlinear response of a
cantilevered cylindrical shell was studied experimentally by Chiba [6]. Pellicano et al. [7] and Amabili [8]
presented a large amplitude periodic response of empty and fluid-filled circular cylindrical shells with simply
supported ends. For shallow shell-panels, Kobayashi and Leissa [9] analyzed nonlinearity of free vibration.
Experiment of nonlinear periodic responses of a cylindrical panel was conducted by Amabili et al. [10].
Aforementioned researches seem to have a focus on basic characteristics of the nonlinear periodic responses of
the shells.

Chaotic phenomena of shells were investigated mainly for plates and shallow shells. Dowell [11] studied
chaotic responses of an infinitely long buckled plate induced by an air flow. Nayfeh and Raouf [12] studied
period-doubling bifurcations of nonlinear responses of an infinitely long cylindrical shell under the condition
of internal resonance. For a square plate, Yang and Sethna [13] and Chang et al. [14] investigated nonlinear
periodic responses and chaotic responses in the internal resonance condition. Fan et al. [15] analyzed chaotic
responses of saddle form cable-suspended roofs by the Melnikov method. Popov et al. [16] analyzed chaotic
energy exchange through auto-parametric resonance in cylindrical shells. Chaotic responses of a shallow
spherical shell was studied by Soliman and Gonc-alves [17]. Foregoing analyses were conducted under the
assumption of relatively lower degree-of-freedom system. Amabili [18] analyzed nonlinear vibrations of
doubly curved shallow shells and chaotic responses were calculated. Finite element approaches for shallow
shells were conducted by Zhou et al. [19] and by Sansour et al. [20]. Experiments of dynamical responses of an
aircraft panel and thermally buckled plates excited by acoustic pressure were conducted by Meastrello et al.
[21] and by Murphy et al. [22], respectively.

The authors have investigated the nonlinear vibrations of a clamped arch [23,24] and chaotic vibrations of a
post-buckled beam [25–27] both experimentally and analytically as fundamental studies of thin shells
dynamics. In the studies, quantitative excellent agreements were obtained. The predominant chaotic responses
are bifurcated from the sub-harmonic resonance responses of 1

2
and 1

3
orders. The authors also confirmed the

same type of chaotic responses by the experiment of a post-buckled reinforced beam [28] and by the
experiment of a clamped beam with axial elastic constraint [29]. For chaotic vibrations of shells, the authors
have presented analytical results on chaotic responses of a shallow cylindrical shell-panel with simply
supported rectangular boundary [30,31]. The analysis with multiple-degree-of-freedom system on the shell-
panel is introduced. Under the various curvatures of the shell-panel, modal contribution to the chaotic
responses was clarified [30]. Chaotic responses were also examined for shell-panel with in-plane elastic
constraint at the boundary [31]. Furthermore, chaotic responses of the cylindrical shell-panel with a
concentrated mass were analyzed [32]. Owing to the existence of the concentrated mass on the shell-panel, the
contribution of vibration modes to the chaotic responses and the Lyapunov dimension are decreased. For the
studies on chaotic vibrations of a shallow cylindrical shell-panel, it seems to the authors that experimental
studies associated with analyses have not been presented.

The chaotic phenomena are very sensitive to the shell geometry and the boundary conditions. To reveal
profound features of chaotic phenomena of a shallow cylindrical shell-panel, it is required that experimental
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results and the relevant analytical results are verified complementarily with each other. In this paper, both
experimental and analytical results are presented. The shallow cylindrical shell-panel is simply supported for
deflection at a square boundary. The shell-panel is subjected to gravity and periodic lateral excitation. In-plane
displacements at the boundary are constrained elastically. In the experiment, a shell-panel is used with
thickness 0.24mm, square form of length 140mm and mean radius 5150mm of the cylindrical surface. All
edges of the rectangular boundary are supported by flexible adhesive films. Then, the boundary conditions are
satisfied as the simply supported for deflection and elastic constraint for in-plane displacements. Linear
natural frequencies and characteristics of restoring force of the shell-panel are measured. By shaking the shell-
panel laterally with periodic acceleration, the nonlinear frequency response curves are recorded. In typical
frequency ranges, chaotic time responses are detected. In the analysis, the Donnell–Mushtari–Vlasov
equation, including lateral inertia force is used for a governing equation. Applying the Bobnov–Galerkin
procedure, the equation is reduced to a set of nonlinear ordinary differential equations. Since the chaotic
vibrations of the shell-panel inherently include higher vibration modes, multiple modes are taken into account
in the analysis. Nonlinear periodic responses are calculated by the harmonic balance method. Time histories of
the chaotic responses are integrated numerically by the Runge–Kutta–Gill method. Chaotic phenomena of the
shallow cylindrical shell-panel are discussed by comparing the results of the experiment and the analysis.
Chaotic time responses are inspected by the Fourier spectra, the Poincaré projections, the maximum
Lyapunov exponents and the Lyapunov dimension.
2. Shallow cylindrical shell-panel and supporting condition

For the test specimen of the shallow cylindrical shell-panel, a phosphor-bronze sheet of thickness 0.198mm
is rolled to a cylindrical surface. Both surfaces of the shell-panel are painted with acrylic resin of white color.
The white surface of the shell-panel enhances measuring accuracy of the deflection as a reflection target of a
laser displacement sensor used in the experiment. The thickness h of the shell-panel including the painted layer
is h ¼ 0:24mm. The material properties of the shell-panel are measured as the Young’s modulus E is 62.4GPa
and the mass density r is 7:52� 103 kg=m3 including the painted layer. The Poisson’s ratio n is taken as 0.33.
The shell is cut to square form on the cylindrical surface. Fig. 1 shows the shallow cylindrical shell-panel and a
rectangular supporting frame. The boundary condition of simply supported edges around the shell-panel is
constructed with following procedure. A supporting frame, made of duralumin, of the shell-panel is fabricated
to square form with inner length 140mm. Side lengths of the shell-panel are measured as a ¼ 139:5mm and
b ¼ 139:8mm. All edges of the shell-panel are connected to the supporting frame by strips of flexible adhesive
film with thickness 0.072mm. One end of the adhesive strip wraps around the edge of the shell-panel, while the
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Fig. 1. Shallow cylindrical shell-panel and supporting condition.
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Fig. 2. The configuration of the simply supported shell-panel parallel to the gravity.
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other end is glued to the inner wall of the supporting frame. The strips are glued alternately along the panel
edge as shown in Fig. 1. Thus, the boundary of the shell satisfies the conditions of simply support for
deflection and of elastic constraint for in-plane displacement. In the figure, the coordinate system is defined by
the x-axis along the straight edge, the y-axis along the curved edge of the shell-panel and the z-axis
perpendicular to the shell surface. In-plane displacements U and V are denoted along the x-axis and the y-
axis, respectively. The deflection of the shell-panel is denoted by W along the z-axis. The shell-panel is
subjected to the gravitational acceleration g and periodic acceleration ad cosOt in the lateral direction of the
shell surface, where ad , O and t correspond to the amplitude of excitation, the exciting angular frequency and
time, respectively.

In the experiment, curved configuration of the shell surface is measured by the laser displacement sensor. To
minimize the static deformation by the gravitational force on the shell-panel, the initial configuration of the
shell-panel is measured by setting the straight edge of the shell parallel to the gravitational direction. The
configuration of the shell surface without gravitational force is shown in Fig. 2. Using the least square
procedure, the circumferential configuration along the y-direction is approximated to cylindrical form. Radius
R of the shell-panel is obtained as R ¼ 5150� 780mm which is much larger than the side length
b ¼ 139:8mm. Raise H of the cylindrical surface from the flat plane is calculated as H ¼ 0:49� 0:08mm.
Moreover, the configuration along the x-direction is slightly curved toward the z-direction. Consequently, the
cylindrical shell-panel has partially saddle form. It is also observed that the boundary of the shell-panel has
small distortion from a perfect cylindrical surface. Peak undulation of the edges is less than 0.07mm.

For the analysis, as shown in Fig. 1, the shallow cylindrical shell-panel is assumed to be doubly curved shell-
panel with radii of curvature Rx and Ry along the x-direction and the y-direction, respectively. The curvature
1=Ry is much larger than the curvature �1=Rx. The shell-panel is assumed to be simply supported for
deflection along all edges of the rectangular boundary. For the in-plane displacement at the boundary, the
edges of opposite side are assumed to be connected to in-plane springs with same stiffness. The in-plane
springs are distributed perpendicular to the edges. At the curved edges x ¼ 0 and a, the spring stiffness per unit
length is denoted by Kx. At the straight edges y ¼ 0 and b, in-plane springs with the stiffness Ky are connected.

3. Procedure of experiments

Static deflection of the shell-panel appears initially under the gravity perpendicular to the shallow shell
surface. The shell-panel and the supporting frame are excited laterally by the cyclic acceleration. Dynamic
responses of the shell-panel relative to the supporting frame are measured. The chaotic responses are inspected
precisely with the following procedure.

3.1. Measurement of linear natural frequencies and restoring force

As fundamental properties of the shell-panel, linear natural frequencies and characteristics of restoring force
are measured.
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Applying periodic acoustical pressure on the shell-panel, resonant response of small amplitude of vibration
is detected by a laser displacement sensor. Natural frequencies of the shell-panel are inspected with a spectrum
analyzer. Natural modes of vibration are also confirmed by scanning the sensor over the shell surface.
Characteristics of restoring force of the shell-panel are examined. To obtain a relation between static
deflection and static concentrated force, the laser displacement sensor and a load cell are used. The load cell
consists of a dual-cantilevered beam with a tip needle-end and a strain gauge glued on the beam. Pressing the
load cell to the shell-panel through the tip needle, the concentrated force is loaded on the shell. Then, the shell-
panel deflects to an equilibrium position of elastic force between the shell-panel and the load cell.
Consequently, the characteristics of the restoring force of the shell-panel can be identified.

3.2. Procedure of vibration test on chaotic responses

A schematic diagram of a vibration test apparatus is shown in Fig. 3. Whole instruments of the vibration
test are numbered from 1 to 16. The cylindrical shell-panel is shaken periodically with an electromagnetic
exciter through the supporting frame. The frame is fixed on a vibration head of the exciter. The excitation is
provided by the devices of the Brüel and Kjaer products as numbered from 1 to 5. The exciter controller 1
(B&K 1050) generates a sinusoidal periodic signal, where the frequency of the periodic signal can be swept
with the resolution of 1mHz. The periodic signal is amplified with the power amplifier 2 (B&K 2708). The
vibration exciter 3 (B&K 4802) drives the supporting frame with periodic acceleration through the exciter head
4 (B&K 4818). The accelerometer pickup 5 (B&K 4371) fixed on the frame detects the acceleration acting on
the shell-panel. The signal of the acceleration is fed back to the controller 1. Then, the peak amplitude of
acceleration can be kept to a prescribed constant level during a sweep of the exciting frequency. Dynamical
responses of the shell-panel are measured with the instruments of the laser displacement sensor from 6 to 8
(Keyence LC2400). Relative displacement of the shell to the supporting frame is detected with the laser
displacement sensors 6 and 7. The sensor 6 detects the periodic displacement of the frame. The sensor 7
measures the sum of the response of the shell-panel and the periodic displacement of the frame. The controller
8 subtracts the two signals. With this subtraction, the pure dynamic response wðtÞ of the shell-panel can be
detected, where w and t indicate the non-dimensional deflection and time, respectively, which will be defined in
Section 4. Moreover, common-mode signals due to external disturbances can be eliminated. The laser sensor 7
is set on the sliding table 9 and the sensor moves on the surface of the shell-panel. Thus, static deflection can be
measured and modal pattern of periodic response can be inspected.
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The instruments from 10 to 16 are the measuring devices of signal processing and data analysis. Nonlinear
frequency responses of the shell-panel are obtained by sweeping the exciting frequency. The time responses of
the shell-panel detected by the laser sensors are transformed to the amplitude in a root mean square value wrms

with the digital voltmeter 10 (Advantest TR6841). The exciting frequency applied on the shell-panel is counted
with the digital frequency counter 11 (Advantest TR5822) through the signal of periodic acceleration
measured with the accelerometer 5. The amplitude wrms of the shell response and the exciting frequency are
transferred to the computer 12 (Apple Macintosh) through the GP-IB bus-line (National Instruments GPIB-
SCSI-A). The exciting frequency is normalized to the non-dimensional exciting frequency o which is defined in
Section 4. Then, the nonlinear frequency response curves are recorded with the relation between wrms and o.
The digital spectrum analyzer 13 (Advantest TR9405) records time responses of chaotic vibrations of the shell-
panel. The chaotic time responses are transformed to the Fourier spectra. Furthermore, the chaotic time
responses are transmitted to the computer 12 and the maximum Lyapunov exponents lmax are calculated. The
Poincaré projection of the response is obtained by the following step. Dynamic displacement of the responses
is transformed to velocity by the differentiation amplifier 14. The set of the displacement w and the velocity
w;ot is recorded sequentially once in every period of the excitation. Synchronized with the period of exciting
acceleration, a pulsating signal is generated with the phase meter 15 (B&K 2971) and the delayed pulse
oscillator 16 (NF Elec. Instr.1930). The phase meter detects the maximum amplitude of the periodic
acceleration, then the pulse oscillator generates the pulsating signal with a prescribed phase delay. The set of
aforementioned displacement and velocity of the chaotic response is recorded by the analyzer 13 in each
trigger by the pulsating signal. The Poincaré projections of the chaotic response are stored in the computer 12,
and the projection is also displayed.

3.3. Thermal control of the shell-panel

The chaotic response of the shallow shell-panel is drastically influenced by a small change of the shell
curvature. The curvature of the shell is intensely changed by the in-plane displacement. The in-plane
displacement has same order with thermal elongation of the shell-panel, even if deviation of the temperature of
the shell-panel is small. To obtain precise results of the chaotic responses, the in-plane thermal elongation of
the shell-panel relative to the supporting frame should be kept constant during the vibration test. The
temperatures both of the shell-panel and the supporting frame are kept constant.

Fig. 4 shows a schematic diagram of the thermal control system. The test shell-panel 1 and the supporting
frame 2, in the enlarged figure, are mounted on the exciter head 3 through the cooling plate 4. The temperature
of the cooling plate is stabilized by running water. Furthermore, the shell-panel and the frame are set in the air
chamber 5 which is surrounded by air-formed sheets. To stabilize the temperature of the shell-panel, the
temperature of ambient air of the shell-panel is controlled within very small fluctuation. Two sets of control
instruments are introduced. First, The air conditioner 6 controls the temperature of the ambient air in the
chamber coarsely. The conditioner controls the temperature slightly lower than a target temperature. The set
of a thermal sensor and a controller 7 detects the temperature yr of the air in the vicinity of the shell-panel and
compensates the temperature yr to the target temperature with the electric heater 8. The temperature yf of the
supporting frame is stabilized by running water through the cooling plate 4. The running water flows through
the hot water bath 9 and is kept to a constant temperature. Both temperatures yr and yf are recorded by the
data-logger 10 and time variation of the temperatures are also monitored by the computer 11. Through the
vibration test, the temperature yr of the ambient air close to the shell-panel is controlled to 20� 0:5 �C, while
the temperature yf of the supporting frame is stabilized almost constant.

To accomplish the stabilization of temperature sufficiently, the cooling plate works to isolates the
supporting frame from large thermal flux transmitted through the electromagnetic exciter. The exciter
exhausts huge hot air. The hot air is cooled down in a thermal reservoir as shown in the figure.

4. Procedure of analysis

The chaotic responses obtained by the experiment are compared with analytical results. The following
procedure of theoretical analysis is introduced for the comparison.



ARTICLE IN PRESS

22˚C

Thermal reservoir

2

3
5

6

7

8

4

9

10

11

1 rθ

f
θ

Fig. 4. Schematic diagram of thermal control system.

K. Nagai et al. / Journal of Sound and Vibration 305 (2007) 492–520498
4.1. Governing equations and boundary conditions

The geometry of the shallow cylindrical shell-panel and the supporting conditions are explained in
Section 2. The experiment of large amplitude vibrations of the shell-panel is restricted to lower frequency
range where bending vibrations are dominant, then the effects of in-plane inertia forces can be neglected in the
analysis. The Donnell–Mushtari–Vlasov type equations modified with a lateral inertia force are introduced
[33,34].

Denoting the stress function by F and using the deflection W , the non-dimensional governing equations of
the shell-panel including lateral inertia force are shown as

r4f ¼ c½b2ðw;2xZ � w;xxw;ZZÞ � axb
2w;ZZ � ayw;xx�, (1)

Lðw; f Þ � w;tt þr
4w� axb

2f ;ZZ � ayf ;xx

� b2ðf ;xxw;ZZ � 2f ;xZw;xZ þ f ;ZZw;xxÞ

� ðps þ pd cosotÞ � qsdðx� x1Þ dðZ� Z1Þ ¼ 0, ð2Þ

where

r2 �
q2

qx2
þ b2

q2

qZ2
. (3)

Eq. (1) corresponds to the compatibility equation in terms of the stress function of the shell-panel, while
Eq. (2) shows the equation of motion for the deflection coupled with the stress function. Here, using notations
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O0 ¼ ð1=a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
and c ¼ 12ð1� n2Þ, the following non-dimensional quantities are introduced:

½x; x1� ¼ ½x;x1�=a; ½Z; Z1� ¼ ½y; y1�=b,

b ¼ a=b; ax ¼ a2=Rxh; ay ¼ a2=Ryh,

w ¼W=h; ½u; v� ¼ ½U ;V �ða=h2
Þ,

½nx; ny; nxy� ¼ ½Nx;Ny;Nxy� ða
2=DÞ; f ¼ F=D,

½kx; ky� ¼ ½Kx;Ky�ðah2=DÞ,

½ps; pd � ¼ ½g; ad �ðra4=DÞ; qs ¼ Qsa
2b=Dh,

t ¼ O0t;o ¼ O=O0. ð4Þ

In the foregoing, D ¼ Eh3=12ð1� n2Þ is the bending rigidity of the shell-panel, E, n and r are the Young’s
modulus, the Poisson’s ratio and the mass density of the shell-panel, respectively. The symbols x and Z are the
non-dimensional coordinates. The symbol b is the aspect ratio of the length of the rectangular boundary. The
symbols ax and ay are the non-dimensional shell curvatures in the x- and y-direction, respectively. The symbol
w is the non-dimensional deflection, while u and v are the in-plane displacements in the x- and Z-direction,
respectively. In Eqs. (1) and (2), subscripts following a comma denote partial differentiations. The symbols
Nx;Ny and Nxy are the stress resultants acting on a cross section perpendicular to the x- and y-direction. The
symbols kx and ky represent the non-dimensional coefficients of the in-plane springs attached to the curved
edge (x ¼ 0 and 1) and the straight edge (Z ¼ 0 and 1), respectively. The symbols ps and pd correspond to the
non-dimensional intensity of distributed force by the gravitational acceleration g and the periodic acceleration
ad , respectively. The symbol qs is the non-dimensional concentrated force. When the characteristics of
restoring force of the shell-panel are examined, the concentrated force Qs is loaded at the point x1 and y1.
The symbols o and t are the non-dimensional exciting frequency and the non-dimensional time, respectively.
The non-dimensional stress resultants nx; ny and nxy are related to the stress function f as

nx ¼ b2f ;ZZ; ny ¼ f ;xx; nxy ¼ �bf ;xZ. (5)

The in-plane displacements u and v are related to w;w0 and f as

c½u;x � axwþ ð1
2
Þw;2x� ¼ b2f ;ZZ � nf ;xx,

c½bv;Z � aywþ ðb2=2Þw;2Z� ¼ f ;xx � nb2f ;ZZ,

c½bu;Z þ v;x þ bw;xw;Z� ¼ �2bð1þ nÞf ;xZ. ð6Þ

The deflection along the all edges of the rectangular boundary is assumed to be simply supported:

x ¼ 0; 1: w ¼ 0;w;xx ¼ 0,

Z ¼ 0; 1: w ¼ 0;w;ZZ ¼ 0. ð7Þ

The in-plane boundary conditions are assumed as

x ¼ 0:

Z 1

0

½nx � kxðu� u0Þ�dZ ¼ 0;

Z 1

0

nxy dZ ¼ 0,

x ¼ 1:

Z 1

0

½nx þ kxðu� uaÞ�dZ ¼ 0;

Z 1

0

nxy dZ ¼ 0,

Z ¼ 0: b
Z 1

0

½ny � kyðv� v0Þ�dx ¼ 0; b
Z 1

0

nxy dx ¼ 0,

Z ¼ 1: b
Z 1

0

½ny þ kyðv� vbÞ�dx ¼ 0; b
Z 1

0

nxy dx ¼ 0. ð8Þ
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In the above conditions, u0; ua; v0 and vb are the initial in-plane displacements for the outer part of the in-plane
springs connected to the edges of the shell-panel. The in-plane stress resultant and the restoring force of the in-
plane spring are in equilibrium with averaged form along the boundary [35]. The dynamical analysis consists
of finding the solutions w and f which satisfy the governing equations and the boundary conditions.

4.2. Reduction to multiple-degree-of-freedom system

The Bobnov–Galerkin procedure is applied to reduce the governing equations to the equations of a
multiple-degree-of-freedom system. The deflection w of the shell-panel is assumed as

wðx; Z; tÞ ¼
X

m

X
n

b̂mnðtÞẑmnðx; ZÞ; ðm; n ¼ 1; 2; 3; . . .Þ,

ẑmnðx; ZÞ ¼ sinmpx sin npZ, ð9Þ

where b̂mn is an unknown time function, while ẑmn is the coordinate function. The indices m and n imply the
half-wavenumbers of the coordinate function along the x- and y-axis, respectively. The solution of the
compatibility equation (1) can be expressed as

f ¼ ð12Þpyx
2
þ ð12ÞpxZ

2 þ pxyxZ

þ
X

m

X
n

d ð0Þmnb̂mn sinmx sin nZ

þ
X

k

X
l

X
m

X
n

b̂kl b̂mnfy
ð1Þ
klmn cosðk �mÞ x cosðl � nÞZ

þ yð2Þklmn cosðk �mÞ x cosðl þ nÞZþ yð3Þklmn cosðk þmÞ x cosðl � nÞZ

þ yð4Þklmn cosðk þmÞ x cosðl þ nÞZg ðk; l;m; n ¼ 1; 2; 3; . . .Þ, ð10Þ

where the notation m ¼ mp is introduced and the symbols d ð0Þmn and yðiÞklmn ði ¼ 1; 2; 3; 4Þ are listed in
Appendix A.

In the foregoing equation, px; py and pxy are arbitrary time functions. Substituting Eqs. (9) and (10) into
Eq. (6), the in-plane displacements u and v are derived. The time functions px; py and pxy are reduced with the
in-plane boundary condition of Eq. (8) as

py ¼
X

m

X
n

fd ð1Þmnb̂mn þ eð1Þmnb̂
2

mng þ g1,

px ¼
X

m

X
n

fdð2Þmnb̂mn þ eð2Þmnb̂
2

mng þ g2,

pxy ¼ 0, ð11Þ

where dðiÞmn; e
ðiÞ
mn and gi, (i ¼ 1; 2) are functions related to the shell geometry, the in-plane spring stiffness and the

initial in-plane displacements, which are listed in Appendix B. In the foregoing procedure, w and f are
expressed with the unknown time function b̂mnðtÞ. The Galerkin procedure is applied to the equation of
motion (2), the following condition is derived for the coordinate function ẑrs as:Z 1

0

Z 1

0

Lðw; f Þẑrsðx; ZÞdxdZ ¼ 0 ðr; s ¼ 1; 2; 3; . . .Þ. (12)

Substituting both Eqs. (9) and (10) into Eq. (12) and performing the integration, the set of nonlinear ordinary
differential equations, in terms of b̂mnðtÞ, is reducedX

m

X
n

B̂rsmnb̂mn;tt þ
X

m

X
n

Ĉrsmnb̂mn þ
X

k

X
l

X
m

X
n

D̂rsklmnb̂kl b̂mn

þ
X

i

X
j

X
k

X
l

X
m

X
n

Êrsijklmnb̂ij b̂kl b̂mn � F̂ rs � ðps þ pd cosotÞĜrs ¼ 0,

ðr; s; i; j; k; l;m; n ¼ 1; 2; 3; . . .Þ. ð13Þ
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In the foregoing, B̂rsmn is the coefficient of inertia term, while the coefficients Ĉrsmn, D̂rsklmn and Êrsijklmn

correspond to the restoring forces of linear, quadratic and cubic terms, respectively. The F̂ rs is the constant
coefficient and Ĝrs is related to the term of periodic excitation. These coefficients include the parameters of the
shell geometry and the in-plane spring, which are listed in Appendix C. The suffices r and s of the coefficients
in Eq. (13) imply the half-wavenumbers of the configuration of deflection in the x-direction and Z-direction,
respectively. A combination of the suffices r and s represents the modal pattern of deflection, which can be
referred as a new index i. The unknown time function b̂mnðtÞ is corresponded to a new variable �bjðtÞ, and the
corresponding coefficients are also renumbered as follows:

�bj � b̂mn; �zj � ẑmn; �Bij � B̂rsmn; �Cij � Ĉrsmn,

�Dijk � D̂rsklmn; �Eijkl � Êrsijklmn; �Fi � F̂ rs; �Gi � Ĝrs. ð14Þ

These variables and coefficients are counted in the order of a set of the half-wavenumbers of the shell-
configuration. For example, b̂11; b̂12 and b̂21 are referred as �b1; �b2 and �b3, respectively. Eq. (13) can be
rearranged as follows: X

j

�Bij
�bj;tt þ

X
j

�Cij
�bj þ

X
j

X
k

�Dijk
�bj
�bk þ

X
j

X
k

X
l

�Eijkl
�bj
�bk
�bl

� �F i � ðps þ pd cosotÞ �Gi ¼ 0 ði; j; k; l ¼ 1; 2; 3; . . .Þ. ð15Þ

Corresponding to Eq. (9), the deflection is expressed as

wðx; Z; tÞ ¼
X

j

�bjðtÞ�zjðx; ZÞ ðj ¼ 1; 2; 3; . . .Þ. (16)

The dynamic responses of the shallow shell-panel are strongly influenced by static deformation. The static
deformation is due to the static forces ps and the in-plane constraint at the boundary. Hence, the static
deformation and the dynamic responses are solved by the following sequential procedure. First, the deflection
wðx; Z; tÞ of the shell-panel is divided into the static deflection wðx; ZÞ and to the dynamic displacement
~wðx; Z; tÞ as

wðx; Z; tÞ ¼ wðx; ZÞ þ ~wðx; Z; tÞ. (17)

The static deflection and the dynamic displacement are assumed as follows:

wðx; ZÞ ¼
X

j

bj
�zjðx; ZÞ,

~wðx; Z; tÞ ¼
X

j

~bjðtÞ�zjðx; ZÞ ðj ¼ 1; 2; 3; . . .Þ, ð18Þ

where bj is an unknown constant and ~bjðtÞ represents an unknown time function of the dynamic displacement
measured from the static equilibrium position. From Eq. (16) to Eq. (18), the variable �bjðtÞ is expressed as
�bjðtÞ ¼ bj þ

~bjðtÞ. Then, substituting this relation to Eq. (15), the following two sets of coupled equations are
obtained:X

j

�Cijbj þ
X

j

X
k

�Dijkbjbk þ
X

j

X
k

X
l

�Eijklbjbkbl � �Fi � ps
�Gi ¼ 0 ði; j; k; l ¼ 1; 2; 3; . . .Þ, (19)

X
j

�Bij
~bj;tt þ

X
j

~Cij
~bj þ

X
j

X
k

~Dijk
~bj
~bk þ

X
j

X
k

X
l

�Eijkl
~bj
~bk
~bl � pd cosot �Gi ¼ 0 ði; j; k; l ¼ 1; 2; 3; . . .Þ,

(20)

where

~Cij ¼ �Cij þ
X

k

ð �Dijk þ �DikjÞbk þ
X

k

X
l

ð �Eijkl þ �Eiljk þ �EikljÞbkbl ,

~Dijk ¼ �Dijk þ
X

l

ð �Eijkl þ �Eiljk þ �EikljÞbl ði; j; k; l ¼ 1; 2; 3; . . .Þ. ð21Þ
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Eq. (19) is the set of cubic equations in terms of bj under the in-plane constraint and the static force ps.
The static deflection wðx; ZÞ can be obtained by the solution bj using Eq. (19). Eq. (20) is the equation of
motion in terms of the new coordinate ~bj which is measured from the static equilibrium position. In the
equation, the restoring forces of a linear spring and of a quadratic nonlinear spring are influenced by the static
deflection.

Furthermore, omitting the nonlinear terms as well as the terms of external periodic force, the linear
equation is obtained for free vibration. The linear natural frequencies oi and corresponding eigenvectors
fip; ðp ¼ 1; 2; 3; . . .Þ are obtained. The linear natural mode of vibration ~zi, corresponding to oi, is expressed as
follows:

~ziðx; ZÞ ¼
1

ni

X
q

cqi
�zqðx; ZÞ,

cqi ¼ fiq

X
k

X
l

fik
�Bklfil

" #�1
2

ði; k; l; q ¼ 1; 2; 3; . . .Þ, ð22Þ

where ni is an arbitrary constant chosen to normalize the maximum amplitude of natural mode to unity. For
the analyses of the dynamic responses, Eq. (20) is transformed to a new set of nonlinear differential equations.
Using the normal coordinates bi corresponding to ~zi, the deflection ~w measured from the static equilibrium
point can be expressed as

~wðx; Z; tÞ ¼
X

i

biðtÞ~ziðx; ZÞ ði ¼ 1; 2; 3; . . .Þ. (23)

Transforming the coordinate ~bj to the normal coordinate bi, one can obtain a set of nonlinear differential
equations in the standard form:

MðbiÞ � bi;tt þ 2eioibi;t þ o2
i bi þ

X
j

X
k

Dijkbjbk

þ
X

j

X
k

X
l

Eijklbjbkbl � pdGi cosot ¼ 0; ði; j; k; l ¼ 1; 2; 3; . . .Þ, ð24Þ

where

Dijk ¼
ni

njnk

X
p

X
q

X
r

~Dpqrcpicqjcrk,

Eijkl ¼
ni

njnknl

X
p

X
q

X
r

X
s

�Epqrscpicqjcrkcsl ,

Gi ¼ ni

X
p

cpi
�Gp ðp; q; r; s ¼ 1; 2; 3; . . .Þ. ð25Þ

The foregoing Eq. (24) has couplings only in the quadratic and cubic nonlinear terms. A linear damping term
is introduced, where ei represents a damping ratio corresponding to ith linear mode of vibration.

In the numerical calculations of the static deformation in Eq. (19) as well as of the linear natural frequencies
in Eq. (20) by omitting the nonlinear and forcing terms, finite terms of unknown variables bj and ~bj are
required up to the maximum term M. The maximum term M of the variable corresponds to the set of the
maximum half-wavenumbers of b̂mn in Eq. (9). After the transformation to the standard form of Eq. (24), the
nonlinear dynamical responses can be calculated with the reduced number of modes Ic less than the number
M, without loosing the numerical accuracy in relatively lower frequency range.

4.3. Determination of periodic responses

Predominant chaotic responses are bifurcated from sub-harmonic resonance responses of 1
2
and 1

3
orders for

the beam and the arch [23,24]. Therefore, it is of importance to evaluate the periodic responses of the shell-
panel. The periodic responses are calculated by the harmonic balance method [36]. The periodic solution bi is
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assumed as

bi ¼ Ci1m0 þ
X

p

½Ci1mp cos mpotþ Ci2mp sin mpot�; ði ¼ 1; 2; 3; . . . ; Ic; p ¼ 1; 2; 3; . . .Þ, (26)

where Ci1m0;Ci1mp and Ci2mp are unknown constants. To obtain the solutions of principal resonance and super-
harmonic resonance, m is chosen as unity, while to get sub-harmonic resonance responses of 1

2
or 1

3
orders, m is

taken as 1
2
or 1

3
, respectively. Substituting Eq. (26) into Eq. (24) and using the harmonic balance method, a set

of coupled nonlinear equations is reduced for the unknown coefficients Ci1m0;Ci1mp and Ci2mp. The solutions of
the coupled equation are determined with the Newton–Raphson method. Amplitude of the resonance is
expressed as a root mean square value ~wrms:

~wrms ¼
1

2

X
p

X
i

Ci1mp
~zi

 !2

þ
X

i

Ci2mp
~zi

 !2
2
4

3
5þ X

i

Ci1m0
~zi

 !2
8<
:

9=
;

1
2

ðp ¼ 1; 2; 3; . . . ; i ¼ 1; 2; 3; . . .Þ.

(27)

4.4. Time histories of chaotic responses

Chaotic vibrations show random-like non-periodic responses. Therefore, to determine chaotic responses, it
is required to integrate numerically the nonlinear ordinary differential equation (24). Denoting the unknown
time function of the displacement bi as b

ð1Þ
i , Eq. (24) is transformed into a set of state equations of first order as

b
ð1Þ
i;t ¼ b

ð2Þ
i ,

b
ð2Þ
i;t ¼ � 2eioib

ð2Þ
i � o2

i b
ð1Þ
i �

X
j

X
k

Dijkb
ð1Þ
j b
ð1Þ
k

�
X

j

X
k

X
l

Eijklb
ð1Þ
j b
ð1Þ
k b
ð1Þ
l þ pdGi cosot ði; j; k; l ¼ 1; 2; 3; . . . ; IcÞ, ð28Þ

where b
ð2Þ
i stands for the velocity of b

ð1Þ
i . Eq. (28) is integrated numerically with the Runge–Kutta–Gill method.

Chaotic time responses are obtained in restricted frequency domains related to the exciting amplitude.

5. Evaluation of chaotic responses

Since chaotic vibrations show random-like non-periodic responses, many types of inspection are required to
confirm the chaotic responses of the shell-panel. A Fourier spectrum of a non-periodic time response shows a
broadband spectrum. However, predominant components of the chaotic response are related to the periodic
resonance response from which the chaotic response is bifurcated. The Poincaré projections of the chaotic
responses show a scattered figure on the phase plane. Furthermore, the projection focuses on a fractal pattern
corresponding to types of chaos.

The Lyapunov exponent is one of the best criteria to confirm the chaotic response. It is defined as the
exponential growth rate of the distance between two neighboring trajectories, namely, fiducial and nearby
trajectories, in the phase space of a dynamical system. If the Lyapunov exponents have one or more positive
values, the response can be confirmed as chaos. The Lyapunov exponents are calculated with the procedure
proposed by Wolf et al. [37]. The Lyapunov dimension dL, which shows a fractal feature of chaos, can also be
calculated by the Lyapunov exponents [38]. Furthermore, number of predominant vibration modes, which
contributes to the chaos, can be estimated by the convergence of the Lyapunov dimension or the maximum
Lyapunov exponent when the assumed dimension of the phase space is increased [39].

In the analysis, the phase space is composed of the 2Ic state variables b
ðpÞ
i ; ðp ¼ 1; 2; i ¼ 1; 2; 3; . . . ; IcÞ of the

governing equation of motion in the standard form. The fiducial trajectory is calculated by the numerical
integration of the equation of motion (Eq. (28)). A set of 2Ic normalized orthogonal vectors is selected as the
set of initial variational vectors of the nearby trajectories from the fiducial trajectory. The time progress of the
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variational vectors is calculated by numerically integrating the linearized variational equation. Then the
exponential growth rates of the Euclidean norms of the variational vectors are evaluated in each infinitesimal
time interval. The exponential growth rates are averaged in the long time interval, then the 2Ic Lyapunov
exponents lr; ðr ¼ 1; 2; 3; . . . ; IcÞ can be calculated.

In the experiment, e-dimensional pseudo-phase space is composed with time-delay coordinates from an time
response, where e is the embedding dimension [40]. A component of the pseudo-phase space is a sequential
time history chosen partially from the time response which has a fixed time delay from the former component.
A trajectory in the pseudo-phase space is constructed from the single time response of the shell-panel from an
arbitrary start time. Two trajectories, which initially have sufficiently small distance, are selected as the fiducial
trajectory and the nearby trajectory. The exponential growth rate of the distance between the two trajectories
is calculated in each infinitesimal time interval. The exponential growth rate is averaged in the long time
interval, then the maximum Lyapunov exponent lmax can be estimated.

6. Results and discussion

6.1. Fundamental properties of the shell-panel

Chaotic responses of the shallow cylindrical shell-panel are influenced drastically by small deviations of the
shell curvature, the boundary condition for deflection and the in-plane constraint at the boundary. It is
essential that the geometrical parameters of the shell-panel are precisely measured in the experiment. However,
some parameters cannot be measured directly. Then, the geometrical parameters of the shell-panel are
indirectly identified by comparing the experimental results and the analytical results. The following results are
used for the identification; the configuration of the shell surface, the linear natural frequencies and the
characteristics of restoring force.

The non-dimensional curvature of the shell-panel without the gravitational force is calculated as ay ¼

16:2� 2:6 by the measurement in Section 2. Fig. 5 shows the deformed configuration of the shell-panel under
the gravity force ps ¼ 359. The shell-panel has large deflection by the snap-through buckling by the gravity
force. The deflection shows nearly symmetric to the center of the shell-panel. Then, assuming the shell-panel
has the symmetric configuration to the center, the parameters are identified with many trials of computation.
Following quantities of the geometrical parameters have been identified for the shallow cylindrical shell-panel
including the slight saddle form

ay ¼ 15; ax ¼ �1; kx ¼ 0:01; ky ¼ 0:001; u0 ¼ ua ¼ 0; v0 ¼ vb ¼ 0, (29)

where u0; ua; v0 and vb are the initial in-plane displacements of the outer part of the in-plane springs. To
determine the linear natural frequencies and the static deflection of the shell-panel, 25 terms are assumed for
the modal expansion in Eq. (9), i.e., M ¼ 25, where integers m and n cover from one to five.

Table 1 shows the linear natural frequencies corresponding to vibration in small amplitude. In the table,
f mn indicates the actual frequency measured by Hz, while omn stands for the non-dimensional frequency.
H = 0.7 [mm].
.

z
y

x

y = 139.8 mm

y = 0 mm

x = 0 mm

x = 139.5 mm

Fig. 5. The deformed configuration of the shell-panel under the gravity.
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Table 1

Natural frequencies and vibration modes of the cylindrical shell

Mode ðm; nÞ
Modal pattern

Experimental Analytical

f mn (Hz) omn ~omn

(1,1) 46.3 27.3 27.3

(2,1) 88.8 52.3 51.1

(1,2) 112 66.2 64.7

(2,2) 151 89.2 75.6

-400

-200

0

200

400

q s

-4 -3 -2 -1 0 1
w*

Fig. 6. Static deflection of the shell by a concentrated load: experimental results, � measured at x ¼ 0:6; Z ¼ 0:4, n measured at

x ¼ 0:6; Z ¼ 0:6, & measured at x ¼ 0:4; Z ¼ 0:6 and � measured at x ¼ 0:4; Z ¼ 0:4. Analytical result, — measured at x ¼ 0:6; Z ¼ 0:6.
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The integers m and n denote half-wavenumbers of vibration-mode along x-axis and Z-axis, respectively. Modal
patterns related to the natural modes of vibration are shown with the notation (m; n). Linear natural
frequencies ~omn by the analysis are also listed in the table. The natural frequency o12 corresponding to the
third mode (1,2) is higher than that of the second mode (2,1) by the effects of the shell curvature and the static
deflection. The linear natural frequencies omn of the modes (1,1), (2,1) and (1,2) obtained by the experiment
are well adapted to the analytical results within the discrepancy of 1.5 percent on average. The discrepancy
between the experimental results and the analytical results of the natural frequency of the mode (2,2) is larger
than those of the other lower vibration modes. The discrepancy seems to be caused by the initial deformation
of the shell-panel with higher asymmetric configuration to the center of the shell-panel. Fig. 6 shows the
characteristics of restoring force. The static deflections wnðx; ZÞ of the shell-panel is shown by the concentrated
force qs acting on the center of the shell-panel. The deflections are measured from the static equilibrium
positions on the shell surface under the gravity force at four points on the shell-panel. The deflections wn at the
symmetric points (x ¼ 0:6, Z ¼ 0:4), (0.6, 0.6), (0.4, 0.6) and (0.4, 0.4) to the center are marked by circle,
triangle, square and cross, respectively.

Analytical result of the restoring force at the point x ¼ 0:6 and Z ¼ 0:6 is denoted by the solid line. When the
deflection of the shell-panel is increased to the negative z-direction from the equilibrium position by the
concentrated force opposite to the direction of gravity, the gradient of curve of the restoring force decreases.
Then the characteristics of a softening spring appear. Furthermore, the gradient of curve changes from zero to
negative. The negative slope is involved from w ¼ �0:8 to �1:9 in the curve. As the deflection increases larger
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to negative z-direction from w ¼ �1:9, the restoring force of the shell-panel exhibits the type of a hardening
spring. Consequently, the shell-panel with large deflection has the spring characteristics of a softening-and-
hardening spring involving partially negative gradient.

The characteristics of restoring force in the experiment agree fairly well with the analytical results within
relatively small deflection. Furthermore, regions of the negative slope in the curves are also in good agreement.
However, in the experiment, the deflections at the four points in larger deformation have discrepancy, even
though the concentrated force is loaded on the center of the shell-panel. The discrepancy is due to the
imperfect configuration of the shell-panel. Asymmetric deformation can be induced easily by the concentrated
force. In the analysis, the shell-panel is assumed to be a symmetric configuration to the center. In both
experiment and analysis, the existence of the negative slope in the restoring force contributes to the generation
of chaotic response in the shell-panel.

6.2. Frequency response curves of the shell-panel

To examine the occurrence of chaotic responses bifurcated from resonance responses, nonlinear frequency
response curves of the shell-panel are inspected under the gravitational force ps ¼ 359 and the periodic exciting
force pd cosot. The amplitude of excitation pd is kept constant pd ¼ 490. Nonlinear frequency-response
curves by the experiment and the analysis are shown in Figs. 7(a) and (b), respectively. In the figure, the
abscissa indicates the exciting frequency o which covers the range from o ¼ 20 to 90. Natural frequencies of
the shell-panel are also indicated by the solid circles to the abscissa. In addition, actual exciting frequency
f ex ¼ O=2p measured with Hz is indicated. The ordinate shows the non-dimensional amplitude ~wrms of the
responses with a root mean square value of the deflection ~w at the position x ¼ 0:6 and Z ¼ 0:6. The frequency
of the excitation is swept very slowly to avoid transient effects on the chaotic response of the shell-panel in the
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Fig. 7. Frequency response curve of the cylindrical shell-panel (pd ¼ 490, measured at x ¼ 0:6; Z ¼ 0:6): (a) experimental results,

(b) analytical results.
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experiment. The amplitude ~wrms is measured with relatively long time interval. In Fig. 7(a) of the experiment,
the solid line indicates the frequency response curve, while the dotted line show the frequencies where jump
phenomena occur. In typical frequency ranges, non-periodic response is generated with amplitude modulation
of ~wrms. In Fig. 7(b) of the analysis, the thick solid lines indicate the frequency response curves of the stable
periodic responses obtained by the harmonic balance method. For the computation of nonlinear dynamical
responses, first six modes are considered, i.e., Ic ¼ 6, within relatively lower exciting frequency range. Linear
damping ratios for individual modes are assumed as ei ¼ 0:008; ði ¼ 1; 2; . . . ; 6Þ. The dotted line indicates the
unstable periodic response which is evaluated with the vertical tangency of the frequency response curve. The
dashed-and-dotted line indicated the backbone curve of nonlinear free vibration corresponding to the lowest
mode of vibration. The non-stationary amplitudes of the chaotic responses are indicated with thin solid lines.
The chaotic responses are calculated with the numerical integration. The amplitudes of the chaotic response
are shown in the figure averaged within every short time intervals. Comparing the frequency response curves
of the experiment with the response curves by the analysis, the type of the periodic resonance is determined by
the notation (m; n : j). Former indices m and n indicate the mode of vibration generated in the resonance, while
index j stands for the order of the periodic resonance. For example, (1,1:1) indicates the response of the
principal resonance corresponding to the lowest mode of vibration (1, 1), while (1,1:1/2) means the sub-
harmonic resonance of 1

2
order.

In Fig. 7(a) of the experiment, when the exciting frequency is decreased from o ¼ 90 in the higher frequency
range, the non-resonant response prevails. Close to the frequency o ¼ 60, the steady-state periodic response of
the sub-harmonic resonance (1,1:1/2) is generated. When the frequency is o ¼ 55:3, the non-periodic response
is generated. The response is bifurcated from the sub-harmonic resonance (1,1:1/2) and is confirmed as the
chaotic vibration with the evaluation methodology of chaotic responses in Section 5. The chaotic response is
denoted by the notation C(m; n : j), where (m; n : j) represents the dominant mode of vibration and the
predominant type of resonance excited in the chaotic vibration. The chaotic response C(1,1:1/2) covers the
frequency from o ¼ 55:3 to 45.5. Then, the response jumps to the non-resonant response with the lowest mode
of vibration at o ¼ 45:5. Furthermore, the periodic response of the sub-harmonic resonance (1,1:1/2) is
generated again at the frequency o ¼ 42:5 by the jump phenomenon. The frequency response curve of the sub-
harmonic resonance of the lowest mode of vibration shows the type of a softening-and-hardening spring.
Moreover, a new type of chaotic response C(1,1:2/3) is bifurcated from the sub-harmonic resonance response
(1,1:1/2) at the frequency o ¼ 39:6. This chaotic response corresponds to the ultra-sub-harmonic resonance
response (1,1:2/3) and continues within the frequency from o ¼ 39:6 to 31.8. Finally, the chaotic response is
transited to the large amplitude periodic vibration of the principal resonance (1,1:1) through the jump
phenomenon.

When the exciting frequency is increased from the lower frequency range, the large amplitude response of
the principal resonance (1,1:1) jumps to the aforementioned chaotic response C(1,1:2/3) at the frequency
o ¼ 36:5. As the exciting frequency approaches o ¼ 46:5, the sub-harmonic response (1,1:1/2) jumps directly
to the non-resonant response. Furthermore, the non-resonant response jumps again to the chaotic response
C(1,1:1/2) at o ¼ 50:6.

In Fig. 7(b) of the analysis, the chaotic responses of type C(1,1:1/2) are generated within the frequency range
from o ¼ 51:6 to 47:5. The chaotic response is bifurcated from the periodic response of the sub-harmonic
resonance (1,1:1/2). Furthermore, the other chaotic responses of the type C(1,1:2/3) are also generated within
the range from o ¼ 44:6 to 41:0. The non-stationary amplitudes of the chaotic response C(1,1:2/3) overlap on
the response curves of the sub-harmonic resonance (1,1:1/2) and the ultra-sub-harmonic resonance (1,1:2/3).
The generation of the chaotic responses is summarized as:
(1)
 Because of the characteristics of restoring force of a softening-and-hardening spring of the shell-panel, the
dominant chaotic responses are bifurcated from the response of sub-harmonic resonances of order 1

2
and

from the response of ultra-sub-harmonic resonance of order 2
3
.

(2)
 In the experiment, when the exciting frequency is decreased, the chaotic responses are easily bifurcated
from the sub-harmonic resonance response or ultra-sub-harmonic resonance response. While the
frequency is increased, the periodic resonance responses are transited to the chaotic responses through
the jump phenomenon.
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Fig. 8. Instability boundaries of the chaotic responses.
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For the large amplitude response of the principal resonance (1,1:1), quantitative difference appears between
the experiment and the analysis. The amplitude of response of the experiment is greater than that of the
analysis at a same frequency. Large amplitude responses of the sub-harmonic resonance are shifted to the
lower frequency range. The difference is due to the following reason. In the analysis, the restoring force
of a softening-and-hardening spring is estimated as the strong hardening nonlinearity in the large deforma-
tion. And the simply supported boundary condition requires that the deflection at the edges of the shell-
panel is zero. However, the edges of the shell-panel by the experiment seem to be elastically supported for
deflection.

Changing the exciting amplitude pd , instability boundaries of the chaotic responses are obtained by the
experiment as shown in Fig. 8. The ordinate indicates the non-dimensional exciting amplitude pd , while the
abscissa presents the exciting frequency o. When the exciting amplitude pd is small, chaotic response is not
generated. As the amplitude pd increases close to pd ¼ 300, both the chaotic responses of the types C(1,1:2/3)
and C(1,1:1/2) are induced. When the amplitude pd is greater than the pd ¼ 450, both chaotic regions
gradually spread to the wide range of frequency. As the exciting amplitude pd increases, the chaotic regions
shift slightly to the higher frequency with the same width of instability range.

The frequency ranges of the chaotic responses obtained by the analysis are also shown by the solid circle
under pd ¼ 490. Comparing the frequency ranges of the experiment and of the analysis under pd ¼ 490, the
ranges both of the chaotic responses C(1,1:1/2) coincide well with each other. The chaotic response of
C(1,1:2/3) of the experiment is located in the lower frequency range than the response of the analysis. Because
the peak amplitude of the chaotic response is larger in the experiment than that in the analysis, frequency
range of the chaotic response is also shifted to the lower range.

6.3. Time histories and frequency spectra of chaotic responses

Under the excitation amplitude pd ¼ 490, time histories and frequency spectra in the region of the chaotic
response C(1,1:1/2) are obtained by the experiment and the analysis. The responses are measured at the
position x ¼ 0:6 and Z ¼ 0:6. Typical experimental results are shown in Fig. 9. In the figures of left side, the
time histories of the deflection ~w are shown with the time ratio t=te normalized by the excitation period
te ¼ 2p=o. In the figures, the peak amplitude of the chaotic response shows irregular movement especially to
negative z-direction. This irregular movement is due to the dynamic snap-through transition of the shell-panel.
The figures of right-hand side show the Fourier spectra of the dominant chaotic responses. The abscissa
indicates the non-dimensional Fourier frequency osp, while the ordinate denotes the amplitude A of the
spectrum scaled by decibel.

As can be seen in Fig. 9(a), Fourier spectrum at the frequency o ¼ 53:2 has many spikes of spectrum
distributed in wide range of Fourier frequency. The chaotic response involves many harmonic components.
However, distinguished peak spectrum of the response can be detected at the half of exciting frequency o.
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Therefore, the chaotic response C(1,1:1/2) is generated predominantly from the sub-harmonic response of 1
2

order [25–27]. As the exciting frequency is decreased from o ¼ 53:2, the chaotic response of the same type
C(1,1:1/2) prevails to the frequency o ¼ 52:6 as shown in Fig. 9(b). At the frequency o ¼ 51:9 and at
o ¼ 50:8, chaotic response with large amplitude is prevailed, while the small amplitude response appears in
short duration as shown in Figs. 9(c) and (d). In the figure of frequency spectrum, distinguished peak
component appears at the frequency of 2

5
of the exciting frequency. The spectrum is slightly deviated from the

peak spectrum ð1
2
Þo in Fig. 9(b). When the exciting frequency is o ¼ 48:5 in Fig. 9(e), the chaotic response

involves harmonic component of 1
2
order.

Fig. 10 shows the time histories and corresponding frequency spectra obtained by the analysis in the region of
the chaotic response C(1,1:1/2). In the numerical integrations of the Runge–Kutta–Gill method, time-step
increment Dt is chosen as 1

240
of the exciting period te. After an initial transient response, which is caused by the

numerical integration, is well damped, the result of response after 3700te is used for inspection of chaotic
responses. In Fig. 10(a), the chaotic response includes the predominant component of the sub-harmonic resonance
response of 1

2
order in the Fourier spectrum at higher exciting frequency o ¼ 48:7. As the exciting frequency is

decreased, from o ¼ 48:3 to 48:0 in Figs. 10(b) and (c), the Fourier spectrum of the chaotic responses C(1,1:1/2)
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Fig. 10. Time histories and frequency spectra of the chaotic responses C(1,1:1/2), analytical results: (a) o ¼ 48:7; (b) o ¼ 48:3;
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involve the harmonic components of 2
5
of the exciting frequency. Furthermore, at the frequency o ¼ 47:7, the

predominant component of 1
2
of the exciting frequency appears again in the chaotic response. According to the

decrement of the exciting frequency, the large amplitude of time histories appears more frequently. Consequently,
in the specific region of the frequency, the chaotic response C(1,1:1/2) has the harmonic component of the 2

5 as well
as the component of 1

2
of the exciting frequency both in the experiment and in the analysis.

The other chaotic responses C(1,1:2/3) in the experiment are detected in the lower frequency range from
o ¼ 39:4 to 33.4 and are shown in Fig. 11. In Fig. 11(a) at the higher frequency o ¼ 39:4, the chaotic response
is generated close to the large amplitude response of the sub-harmonic resonance (1,1:1/2). When the exciting
frequency is decreased to o ¼ 38:3; 37:1 and 36.2, in Figs. 11(b)–(d), distinguished spectrum component of the
chaotic response clearly appears at 2

3
of the exciting frequency. This type of chaotic responses is closely related

to the ultra-sub-harmonic resonance of 2
3
order. In the lower range of the frequency o ¼ 33:4, peaks of the

spectrum are observed at the frequencies ð12Þo and ð23Þo simultaneously.
In the analysis, predominant chaotic responses C(1,1:2/3) are generated from the exciting frequency o ¼

44:6 to 41.0. Fig. 12 shows the time histories and the corresponding Fourier spectra of C(1,1:2/3). In Fig. 12(a)
at o ¼ 43:0, the time history shows the large amplitude responses. As shown in the frequency response curves
of Fig. 7(b), the amplitude covers the amplitudes of the sub-harmonic resonance (1,1:1/2) and the ultra-sub-
harmonic resonance (1,1:2/3). It is found that the harmonic component of 2

3
of the exciting frequency in the

chaotic response C(1,1:2/3) is gradually increased in the decreased exciting frequency from o ¼ 43:0 to 41.8.
In the Fourier spectrum of the chaotic time response, many spikes of the spectrum have been observed

related to the resonance responses of the sub-harmonic resonance of order 1
2 and the ultra-sub-harmonic

resonance of order 2
3
. It can be explained that the chaotic responses are generated owing to the quadratic and

the cubic nonlinear restoring force of the cylindrical shell-panel.
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Fig. 11. Time histories and frequency spectra of the chaotic responses C(1,1:2/3), experimental results: (a) o ¼ 39:4; (b) o ¼ 38:3;
(c) o ¼ 37:1; (d) o ¼ 36:2; (e) o ¼ 33:4.
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6.4. Poincaré projections of the shell-panel

In the experiment, the responses of the deflection ~w and the velocity ~w;ot of the chaotic vibration
are recorded at the position x ¼ 0:6; Z ¼ 0:6 of the shell-panel. Fig. 13 shows the Poincaré projection
of the chaotic response C(1,1:1/2). In each projection, 6000 points are plotted at the phase delay y ¼ p=2
radian from the maximum amplitude of the exciting acceleration. In Figs. 13(a) and (b), the Poincaré
projections at the frequency o ¼ 53:2 and 52:6 have comparatively clear chaotic attractors and show a distinct
fractal pattern with sharp bend. Decreasing the exciting frequency as shown in Figs. 13(c) and (d), the figures
of the projections are gradually enlarged and the fractal patterns become more complicated ones.
Furthermore, at o ¼ 50:4 and 48.5 as shown in Figs. 13(e) and (f), the fractal patterns can be observed
more clearly.

Fig. 14 shows the Poincaré projection of the chaotic response C(1,1:1/2) by changing the phase delay y.
Fig. 14(a), in the left side, represents the experimental results, while Fig. 14(b) shows the analytical results.
As the phase angle y is shifted with p=6 radian, the attractor rotates clockwise. It is found that both
projections of the experiment and the analysis closely resemble each other in the figure and the rotation in each
phase angle.
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Fig. 12. Time histories and frequency spectra of the chaotic responses C(1,1:2/3), analytical results: (a) o ¼ 43:0; (b) o ¼ 42:6;
(c) o ¼ 42:2; (d) o ¼ 41:8.
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The Poincaré projections of the chaos C(1,1:2/3) in the experiment are shown in Fig. 15. The fractal patterns
are different qualitatively from that of the chaos C(1,1:1/2) in Fig. 13. In Fig. 15(a) at the frequency o ¼ 39:4,
the Poincaré projection is separated into two groups. This projection represents the chaotic response close to
the periodic response of the sub-harmonic resonance of 1

2
order. When the frequency is decreased to o ¼ 39:2

in Fig. 15(b), these two groups of projection are combined to a continuous figure. Furthermore, decreasing the
exciting frequency from o ¼ 38:3 to 36:2 as shown from Figs. 15(c)–(e), the Poincaré projections of the chaos
C(1,1:2/3) show more complicated figure and clear fractal pattern on the phase plane. Finally at the frequency
o ¼ 33:4 in Fig. 15(f), the figure of Poincaré projection is focused to a condensed group locally compared with
the figure in Fig. 15(e).

Fig. 16 shows the Poincaré projections of the chaos C(1,1:2/3) by the experiment and by the analysis with
different phase delays. Both Poincaré projections show same fractal pattern clearly. Drastic changes of the
Poincaré projections are also found in every change of the phase angle. The Poincaré projections of the chaos
C(1,1:2/3) by the experiment coincide fairly well with the projections by the analysis.
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6.5. The maximum Lyapunov exponents of the shell

The maximum Lyapunov exponents of the chaotic response of the shell-panel are calculated, following
the procedure by Wolf et al. [37] in Section 5, with our programming code. In the experimental results in
Fig. 17(a), the maximum Lyapunov exponents have positive values in the frequency region of the chaotic
responses. The responses are confirmed as the chaos. The exponents of the chaos C(1,1:1/2) take close values
from lmax ¼ 1:9 to 2.3, and averaged value is lmax ¼ 2:0. In the region of the chaos C(1,1:2/3), the maximum
Lyapunov exponents take smaller values than that of C(1,1:1/2). The maximum Lyapunov exponent ranges
from lmax ¼ 0:9 to 1.9, and averaged exponent takes lmax ¼ 1:7.

Fig. 17(b) shows the maximum Lyapunov exponent lmax calculated by the analysis. In the both regions of
the chaotic responses C(1,1:1/2) and C(1,1:2/3), the positive Lyapunov exponents are obtained. The maximum
Lyapunov exponents of the chaos C(1,1:1/2) take the averaged value lmax ¼ 2:5. While, the maximum
exponents of the chaos C(1,1:2/3) take the averaged value lmax ¼ 2:8.

In the region of the chaos C(1,1:1/2), the maximum Lyapunov exponent lmax ¼ 2:0 in the experiment
agrees fairly well with the exponent lmax ¼ 2:5 in the analysis. For the chaos C(1,1:2/3), the maximum
Lyapunov exponent lmax ¼ 1:7 in the experiment has a same order with the exponent lmax ¼ 2:8 in
the analysis. There is still small discrepancy between them, which remains to a future study on the shallow
shell-panel.

Fig. 18(a) shows the maximum Lyapunov exponents lmax related to the embedding dimension e in the
chaotic region of C(1,1:1/2) obtained by the experiment. As the embedding dimension increases more than
e ¼ 6, the maximum Lyapunov exponents lmax converge to a positive constant value. In the analysis, the
Lyapunov dimension dL of the chaotic response C(1,1:1/2) is calculated by changing the assumed number of
vibration modes Ic. The result of the Lyapunov dimensions, which is averaged in the region of the chaos, is
shown in Fig. 18(b). When the number of modes Ic is increased close to Ic ¼ 3 and 4, the Lyapunov dimension
dL converges to the value dL ¼ 5:7. Consequently, the number of predominant modes of vibration generated
in the chaos C(1,1:1/2) is counted as three.
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For the chaotic response C(1,1:2/3), the convergence of the maximum Lyapunov exponent in the
experiment and the Lyapunov dimension in the analysis is shown in Fig. 19. It is observed that the maximum
Lyapunov exponents lmax converge to positive magnitudes within the embedding dimension e ¼ 7
and 8 in Fig. 19(a), while the Lyapunov dimension saturates to dL ¼ 6:7 with the number of mode Ic ¼ 4
in Fig. 19(b). Therefore, four modes of vibration are generated predominantly in the chaotic response
C(1,1:2/3).

7. Conclusions

Precise experimental results and analytical results have been presented on chaotic vibrations of a shallow
cylindrical shell-panel with simply supported edges subjected to the gravity and periodic acceleration. Main
results are summarized as follows.
(1)
 Two types of chaotic vibrations are bifurcated predominantly from the sub-harmonic resonance response
of 1

2
order and the ultra-sub-harmonic resonance response of 2

3
order, corresponding to the lowest mode of

vibration. The chaotic responses are induced owing to the quadratic and cubic nonlinear restoring forces.
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The responses are accompanied with the dynamic snap-through which is originated by the restoring force
of the softening-and-hardening type including negative gradient.
(2)
 When the exciting frequency decreases in the experiment, the two types of chaotic responses are bifurcated
continuously from the periodic response of the sub-harmonic resonance of order 1

2
. As the frequency

increases, chaotic response is suddenly generated by the transition from the large amplitude principal
resonance and from the non-resonant response through the jump phenomenon.
(3)
 The Poincaré projection of the chaos related to the sub-harmonic response of 1
2
order has qualitative

difference with the projection of the chaos of the ultra-sub-harmonic response of 2
3
order. The fairly

good agreements are obtained in the Poincaré projections of the chaos in the experiment and in the
analysis.
(4)
 The maximum Lyapunov exponents of the two types of the chaotic responses take the same order
around lmax ¼ 2 in the experiment and in the analysis. In the experiment, three modes of
vibration contribute to the chaotic response bifurcated from the sub-harmonic resonance of order
1
2
. While, the chaos bifurcated from the ultra-sub-harmonic resonance of order 2

3
involves four

modes of vibration. The same features are also confirmed with the Lyapunov dimension in the
analysis.
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Appendix A

The coefficients in Eq. (10) are shown below in the solution of the compatibility equation (1):

dð0Þmn ¼ cðaym2 þ axb
2n2Þ=ðm2 þ b2n2Þ

2,

yð1Þklmn ¼ � ðcb
2=8Þðml � knÞ2ð1� dkmÞð1� dlnÞ=fðk �mÞ2 þ b2ðl � nÞ2g2,

yð2Þklmn ¼ ðcb
2=8Þðml þ knÞ2=fðk �mÞ2 þ b2ðl þ nÞ2g2,

yð3Þklmn ¼ ðcb
2=8Þðml þ knÞ2=fðk þmÞ2 þ b2ðl � nÞ2g2,

yð4Þklmn ¼ � ðcb
2=8Þðml � knÞ2=fðk þmÞ2 þ b2ðl þ nÞ2g2,

where the symbol dkm is the Kronecker’s delta.
Appendix B

The coefficients are shown below related to the in-plane elastic support in Eq. (11):

d ð1Þmn ¼ k0fK
ð1Þ
mn=cx þ nK ð2Þmn=cgPmPn,

d ð2Þmn ¼ ðk0=b
2
ÞfK ð2Þmn=cy þ nK ð1Þmn=cgPmPn,

Pm � ½ð�1Þ
m
� 1�ð1� dm0Þ=m,

eð1Þmn ¼ � ðk0=8ÞðK
ð3Þ
mn=cx þ nK ð4Þmn=cÞ,

eð2Þmn ¼ � k0=ð8b
2
ÞðK ð4Þmn=cy þ nK ð3Þmn=cÞ,

g1 ¼ k0fbðv0 � vbÞ=cx þ nðu0 � uaÞ=cg,

g2 ¼ ðk0=b
2
Þfðu0 � uaÞ=cy þ nbðv0 � vbÞ=cg,

1=cx ¼ 2=kx þ 1=c,

1=cy ¼ 2b=ky þ 1=c,

k0 ¼ � f1=ðcxcyÞ � n2=c2g�1,

K ð1Þmn ¼ d ð0Þmnð�m2 þ nb2n2Þ=cþ ay,

K ð2Þmn ¼ d ð0Þmnð�b
2n2 þ nm2Þ=cþ ax,

K ð3Þmn ¼ b2n2 þ nm2,

K ð4Þmn ¼ nb2n2 þm2.
Appendix C

The coefficients are shown below in the nonlinear ordinary differential equation Eq. (13):

B̂rsmn � ð
1
4
Þdrmdsn,

Ĉrsmn � ð
1
4
Þfðm2 þ b2n2Þ

2
þ d ð0Þmnðaxb

2n2 þ aym2Þ þ b2ðg2m
2 þ g1n

2Þgdrmdsn � ðaxb
2d ð2Þmn þ aydð1ÞmnÞPrPs,

D̂rsklmn � � axb
2
ðYð1Þrsklmn þ eð2ÞmndmkdnlPrPsÞ

� ayðY
ð2Þ
rsklmn þ eð1ÞmndmkdnlPrPsÞ

þ b2½d ð0Þmnfð
1
8
ÞJ
ðþÞ

rsklmn � ðk
2n2 þ l2m2ÞJ

ð�Þ

rsklmng

þ ð 1
4
Þdrkdslðd

ð2Þ
mnk2
þ d ð1Þmnl2Þ�,
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Êrsmnklij � b2fi2K
ð1Þ
rsmnklij þ j2K

ð2Þ
rsmnklij þ 2i jK

ð3Þ
rsmnklij

þ ð 1
4
Þdmkdnldridsjðe

ð2Þ
mni2 þ eð1Þmnj2Þg,

F̂ rs � � ðaxb
2g2 þ ayg1ÞPrPs,

Ĝrs � PrPs,

Yð1Þrsklmn � � ð
1
4
Þ½ðl � nÞ2ðPl�n�s �Pl�nþsÞ

�fyð1ÞklmnðPk�m�r �Pk�mþrÞ þ yð3ÞklmnðPkþm�r �PkþmþrÞg

þ ðl þ nÞ2ðPlþn�s �PlþnþsÞ

�fyð2ÞklmnðPk�m�r �Pk�mþrÞ þ yð4ÞklmnðPkþm�r �PkþmþrÞg�,

Yð2Þrsklmn � � ð
1
4
Þ½ðk �mÞ2ðPk�m�r �Pk�mþrÞ

�fyð1ÞklmnðPl�n�s �Pl�nþsÞ þ yð2ÞklmnðPlþn�s �PlþnþsÞg

þ ðk þmÞ2ðPkþm�r �PkþmþrÞ

�fyð3ÞklmnðPl�n�s �Pl�nþsÞ þ yð4ÞklmnðPlþn�s �PlþnþsÞg�,

J
ð�Þ

rsmnkl ¼ ð
1
16Þ½ðPk�m�r �Pk�mþrÞ � ðPkþm�r �PkþmþrÞ�

�½ðPl�n�s �Pl�nþsÞ � ðPlþn�s �PlþnþsÞ�,

J
ðþÞ

rsmnkl ¼ ½ðPk�m�r �Pk�mþrÞ þ ðPkþm�r �PkþmþrÞ�

�½ðPl�n�s �Pl�nþsÞ þ ðPlþn�s �PlþnþsÞ�,

Dijk ¼ ð
1
4
Þ½dði�j�kÞ;0 � dði�jþkÞ;0 � dðiþj�kÞ;0 � dðiþjþkÞ;0�,

K
ð1Þ
rsmnklij ¼ � ðy

ð1Þ
klmnDrðk�mÞi þ yð3ÞklmnDrðkþmÞiÞðl � nÞ2Dsðl�nÞj

� ðyð2ÞklmnDrðk�mÞi þ yð4ÞklmnDrðkþmÞiÞðl þ nÞ2DsðlþnÞj,

K
ð2Þ
rsmnklij ¼ � ½y

ð1Þ
klmnðk �mÞ2Drðk�mÞi þ yð3Þklmnðk þmÞ2DrðkþmÞi�Dsðl�nÞj

� ½yð2Þklmnðk �mÞ2Drðk�mÞi þ yð4Þklmnðk þmÞ2DrðkþmÞi�DsðlþnÞj,

K
ð3Þ
rsmnklij ¼ ½y

ð1Þ
klmnðk �mÞ2Driðk�mÞ þ yð3Þklmnðk þmÞDriðkþmÞ�ðl � nÞDsjðl�nÞ

þ ½yð2Þklmnðk �mÞDriðk�mÞ þ yð4Þklmnðk þmÞDriðkþmÞ�ðl þ nÞDsjðlþnÞ.
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